本站首页    管理页面    写新日志    退出

公告

You are all my reasons! 

桃李花林又一在

淫荡一日同风起,风骚直上九万里

仙子凌波微步罗衫飘忽十步一回头

我的最爱:网游,程序,文学

QQ:89636669


我的分类(专题)

日志更新

最新评论

留言板

链接

Blog信息
blog名称:一维空间
日志总数:163
评论数量:248
留言数量:33
访问次数:653670
建立时间:2007年10月24日




 [机器学习]【转】SVM学习之四——从机器学习到支持向量机

dskongenius 发表于 2008/3/26 14:24:28

机器学习(Machine Learning, ML)的目的是根据给定的训练样本求对某系统输入输出之间依赖关系的估计,使它(这种关系)能够对未知输出做出尽可能准确地预测。机器学习至今没有一个精确的公认的定义。作为人工智能(Artificial Intelligence, AI)的一个重要研究领域,ML的研究工作主要围绕学习机理、学习方法和面向任务这三个基本方面进行研究。模式识别、函数逼近和概率密度估计是三类基本的ML问题。   从数学的角度来考虑,机器学习问题就是已知n个独立同分布的观测样本,在同一组预测函数中求一个最优的函数对依赖关系进行估计,使期望风险R[f]最小。损失函数是评价预测准确程度的一种度量,它与预测函数f(x)密切相关。而f(x)的期望风险依赖于概率分布和损失函数,前者是客观存在的,后者是根据具体问题选定的,带有(主观的)人为的或偏好色彩。期望风险的大小直观上可以理解为,当我们用f(x)进行预测时,“平均”的损失程度,或“平均”犯错误的程度。   但是,只有样本却无法计算期望风险,因此,传统的学习方法用样本定义经验风险Remp[f]作为对期望风险的估计,并设计学习算法使之最小化。即所谓的经验风险最小化(Empirical Risk Minimization, ERM)归纳原则。经验风险是用损失函数来计算的。对于模式识别问题的损失函数来说,经验风险就是训练样本错误率;对于函数逼近问题的损失函数来说,就是平方训练误差;而对于概率密度估计问题的损失函数来说,ERM准则就等价于最大似然法。事实上,用ERM准则代替期望风险最小化并没有经过充分的理论论证,只是直观上合理的想当然做法。也就是说,经验风险最小不一定意味着期望风险最小。其实,只有样本数目趋近于无穷大时,经验风险才有可能趋近于期望风险。但是很多问题中样本数目离无穷大很远,那么在有限样本下ERM准则就不一定能使真实风险较小啦。ERM准则不成功的一个例子就是神经网络的过学习问题(某些情况下,训练误差过小反而导致推广能力下降,或者说是训练误差过小导致了预测错误率的增加,即真实风险的增加)。   统计学习理论(Statistical Learning Theory, SLT)和支持向量机(Support Vector Machine, SVM)建立了一套较好的有限训练样本下机器学习的理论框架和通用方法,既有严格的理论基础,又能较好地解决小样本、非线性、高维数和局部极小点等实际问题,其核心思想就是学习机器(又叫预测函数,或学习函数,或学习模型)F要与有限的训练样本相适应。在学习算法中需要选择恰当的F,这里的关键因素是F的大小,或者F的丰富程度,或者说F的“表达能力”,VC维(Vapnik-Chervonenkis Dimension)就是对这种“表达能力”的一种描述。   VC维的定义如下:对于一个指示函数集,如果存在h个样本能够被函数集中的函数按所有可能的2的h次幂种形式分开,则称函数集能够把h个样本都打散,h的最大值就是函数集的VC维。VC维是SLT中的一个重要概念,它是函数集学习性能的重要指标。目前尚没有通用的关于任意函数集VC维计算的理论,只知道一些特殊的函数集的VC维。比如,在n维空间中线性分类器和线性实函数的VC维是 n+1,而 f(x,a) = sin(ax) 的VC维则为无穷大。对于给定的学习函数集,如何(用理论或实验的方法)计算其VC维是当前统计学习理论中有待研究的一个问题。   由上文可知,在有限样本情况下,仅仅用ERM来近似期望风险是行不通的。统计学习理论给出了期望风险 R[f] 与经验风险 Remp[f] 之间关系:R[f] <= ( Remp[f] + e )。其中 e = g(h/n) 为置信区间,e 是VC维 h 的增函数,也是样本数n的减函数。右端称为结构风险,它是期望风险 R[f] 的一个上界。经验风险的最小依赖较大的 F (样本数较多的函数集)中某个 f 的选择,但是 F 较大,则VC维较大,就导致置信区间 e 变大,所以要想使期望风险 R[f] 最小,必须选择合适的 h 和 n 来使不等式右边的结构风险最小,这就是结构风险最小化(Structural Risk Minimization, SRM)归纳原则。实现SRM的思路之一就是设计函数集的某种结构使每个子集中都能取得最小的经验风险(如使训练误差为0),然后只需选择适当的子集使置信范围最小,则这个子集中使经验风险最小的函数就是最优函数。SVM方法实际上就是这种思想的具体实现。   SVM是一种基于统计的学习方法,它是对SRM的近似。概括地说,SVM就是首先通过用内积函数定义的非线性变换将输入空间变换到一个高维空间,然后再在这个空间中求(广义)最优分类面的分类方法。


阅读全文(1999) | 回复(0) | 编辑 | 精华

 



发表评论:
昵称:
密码:
主页:
标题:
验证码:  (不区分大小写,请仔细填写,输错需重写评论内容!)



站点首页 | 联系我们 | 博客注册 | 博客登陆

Sponsored By W3CHINA
W3CHINA Blog 0.8 Processed in 0.045 second(s), page refreshed 144776144 times.
《全国人大常委会关于维护互联网安全的决定》  《计算机信息网络国际联网安全保护管理办法》
苏ICP备05006046号