本站首页    管理页面    写新日志    退出

公告

You are all my reasons! 

桃李花林又一在

淫荡一日同风起,风骚直上九万里

仙子凌波微步罗衫飘忽十步一回头

我的最爱:网游,程序,文学

QQ:89636669


我的分类(专题)

日志更新

最新评论

留言板

链接

Blog信息
blog名称:一维空间
日志总数:163
评论数量:248
留言数量:33
访问次数:651786
建立时间:2007年10月24日




 [数据挖掘]数据挖掘经典算法(转自数据挖掘青年)

dskongenius 发表于 2007/12/14 12:05:53

Classification==============  #1. C4.5 Quinlan, J. R. 1993. C4.5: Programs for Machine Learning.Morgan Kaufmann Publishers Inc.  #2. CART L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification andRegression Trees. Wadsworth, Belmont, CA, 1984.  #3. K Nearest Neighbours (kNN) Hastie, T. and Tibshirani, R. 1996. Discriminant Adaptive NearestNeighbor Classification. IEEE Trans. PatternAnal. Mach. Intell. (TPAMI). 18, 6 (Jun. 1996), 607-616. DOI= http://dx.doi.org/10.1109/34.506411  #4. Naive Bayes Hand, D.J., Yu, K., 2001. Idiot's Bayes: Not So Stupid After All?Internat. Statist. Rev. 69, 385-398. Statistical Learning====================  #5. SVM Vapnik, V. N. 1995. The Nature of Statistical LearningTheory. Springer-Verlag New York, Inc.  #6. EM McLachlan, G. and Peel, D. (2000). Finite Mixture Models. J. Wiley, New York. Association Analysis====================  #7. Apriori Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for MiningAssociation Rules. In Proc. of the 20th Int'l Conference on Very LargeDatabases (VLDB '94), Santiago, Chile, September 1994. http://citeseer.comp.nus.edu.sg/agrawal94fast.html  #8. FP-Tree Han, J., Pei, J., and Yin, Y. 2000. Mining frequent patterns withoutcandidate generation. In Proceedings of the 2000 ACM SIGMODinternational Conference on Management of Data (Dallas, Texas, UnitedStates, May 15 - 18, 2000). SIGMOD '00. ACM Press, New York, NY, 1-12.DOI= http://doi.acm.org/10.1145/342009.335372 Link Mining===========  #9. PageRank Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextualWeb search engine. In Proceedings of the Seventh internationalConference on World Wide Web (WWW-7) (Brisbane,Australia). P. H. Enslow and A. Ellis, Eds. Elsevier SciencePublishers B. V., Amsterdam, The Netherlands, 107-117. DOI= http://dx.doi.org/10.1016/S0169-7552(98)00110-X  #10. HITS Kleinberg, J. M. 1998. Authoritative sources in a hyperlinkedenvironment. In Proceedings of the Ninth Annual ACM-SIAM Symposium onDiscrete Algorithms (San Francisco, California, United States, January25 - 27, 1998). Symposium on Discrete Algorithms. Society forIndustrial and Applied Mathematics, Philadelphia, PA, 668-677. Clustering==========  #11. K-Means MacQueen, J. B., Some methods for classification and analysis ofmultivariate observations, in Proc. 5th Berkeley Symp. MathematicalStatistics and Probability, 1967, pp. 281-297.  #12. BIRCH Zhang, T., Ramakrishnan, R., and Livny, M. 1996. BIRCH: an efficientdata clustering method for very large databases. In Proceedings of the1996 ACM SIGMOD international Conference on Management of Data(Montreal, Quebec, Canada, June 04 - 06, 1996). J. Widom, Ed. SIGMOD '96. ACM Press, New York, NY, 103-114. DOI= http://doi.acm.org/10.1145/233269.233324 Bagging and Boosting====================  #13. AdaBoost Freund, Y. and Schapire, R. E. 1997. A decision-theoreticgeneralization of on-line learning and an application toboosting. J. Comput. Syst. Sci. 55, 1 (Aug. 1997), 119-139. DOI= http://dx.doi.org/10.1006/jcss.1997.1504 Sequential Patterns===================  #14. GSP Srikant, R. and Agrawal, R. 1996. Mining Sequential Patterns:Generalizations and Performance Improvements. In Proceedings of the5th international Conference on Extending Database Technology:Advances in Database Technology (March 25 - 29, 1996). P. M. Apers,M. Bouzeghoub, and G. Gardarin, Eds. Lecture Notes In ComputerScience, vol. 1057. Springer-Verlag, London, 3-17.  #15. PrefixSpan J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen, U. Dayal andM-C. Hsu. PrefixSpan: Mining Sequential Patterns Efficiently byPrefix-Projected Pattern Growth. In Proceedings of the 17thinternational Conference on Data Engineering (April 02 - 06,2001). ICDE '01. IEEE Computer Society, Washington, DC. Integrated Mining=================  #16. CBA Liu, B., Hsu, W. and Ma, Y. M. Integrating classification andassociation rule mining. KDD-98, 1998, pp. 80-86. http://citeseer.comp.nus.edu.sg/liu98integrating.html    Rough Sets==========  #17. Finding reduct Zdzislaw Pawlak, Rough Sets: Theoretical Aspects of Reasoning aboutData, Kluwer Academic Publishers, Norwell, MA, 1992 Graph Mining============  #18. gSpan Yan, X. and Han, J. 2002. gSpan: Graph-Based Substructure PatternMining. In Proceedings of the 2002 IEEE International Conference onData Mining (ICDM '02) (December 09 - 12, 2002). IEEE Computer


阅读全文(1710) | 回复(0) | 编辑 | 精华

 



发表评论:
昵称:
密码:
主页:
标题:
验证码:  (不区分大小写,请仔细填写,输错需重写评论内容!)



站点首页 | 联系我们 | 博客注册 | 博客登陆

Sponsored By W3CHINA
W3CHINA Blog 0.8 Processed in 0.189 second(s), page refreshed 144764753 times.
《全国人大常委会关于维护互联网安全的决定》  《计算机信息网络国际联网安全保护管理办法》
苏ICP备05006046号